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Abstract
Quantum systems with multiple states are often reduced to simpler systems by adiabatic
elimination of far-off-resonant states. This method provides accurate coupling and Stark shifts
in the reduced system for very large values of the detunings only, far greater than that of the
relevant couplings. We introduce two alternative techniques for exclusion of an off-resonant
state based on the adiabatic and superadiabatic approximations, which provide far more
accurate expressions for the coupling and the Stark shifts in the reduced system, and which are
valid in much broader ranges of interaction parameters than the traditional adiabatic
elimination method. The reason is that the conditions for the adiabatic and superadiabatic
approximations only demand, for smooth pulse shapes, the detuning to be greater than the
Fourier width of the pulse; hence, these approximations can be used even when the couplings
exceed the detunings, i.e. when the excluded states can be described as ‘nearly resonant’. The
error of the adiabatic and superadiabatic approximations can be easily suppressed below the
quantum computing benchmark of 10−4, an objective that is hard to achieve with the
traditional adiabatic elimination method.

(Some figures may appear in colour only in the online journal)

1. Introduction

Adiabatic elimination is a basic tool for reduction of complex
quantum systems with multiple linkages to simpler effective
systems with fewer linkages by removing weakly coupled
states that are far off resonance with the relevant external
fields. A few different (but related) approaches obtain the same
reduced system wherein the properties of the adiabatically
eliminated state are imprinted onto the effective couplings
and the light (or ac Stark) shifts. These approaches include
the second-order perturbation theory, formal integration of
the Schrödinger equation with subsequent expansion of the
ensuing integrals via integration by parts, mere annulling of
the derivatives of the off-resonant states, and others [1, 2].
The validity of this approximation has been examined in great
detail by several authors [3–6]. Regardless of the derivation,
the condition for validity of the adiabatic elimination is that
the detuning � in each transition is far greater than the Rabi
frequency � of the respective driving field: |�| � �.

Recently, we have shown that the traditional adiabatic
elimination, when applied to an off-resonant two-state system,
can provide an accurate estimate for the acquired dynamic
phase shift, with an error below the quantum computing
benchmark of 10−4 [7], only for very large values of the
detuning � [8]. We have proposed to use instead the adiabatic
approximation, which is a far more accurate tool for evaluation
of phase shifts, with a vast domain of validity: for smooth pulse
shapes, it demands simply � � 1/T , where T is the pulse
width [9]. The accuracy is further enhanced by superadiabatic
corrections [8]. We can therefore claim that this approach
is applicable from far-off-resonant to nearly resonant states
equally well.

In this work we extend this approach to the elimination
of off-resonant states in quantum systems with multiple
states, with special attention given to the elimination of the
middle state in three-state chainwise connected systems. Two
important examples of three-state chains are the ladder and
� systems. Ladder systems are found in resonantly enhanced
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Figure 1. Linkage diagram for a three-state lambda system (left),
and the same system after Morris–Shore transformation (right). �1

and �2 are the Rabi frequencies and � is the detuning.

two-photon excitation in many atoms, for instance, in the 5s–
5p–5d transition chain in rubidium wherein state 5p is nearly
midway between states 5s and 5d [10]. Typical � systems
are the Raman transitions between two ground states via an
excited state. Raman transitions are a very popular tool for
qubit manipulations in quantum information processing [7]
because they allow the qubit to be formed of ground states; for
example, the so-called radio-frequency qubits possess much
longer coherence times than the optical qubits [11].

2. Model system

Because in the present context the ladder and � systems
are treated identically, we shall only consider a three-state
quantum system in a � configuration, interacting with two
coherent fields as illustrated in figure 1(left); the results extend
to ladder systems in an obvious manner. We wish to estimate
the transition probability from state |1〉 to state |2〉 when the
middle state |3〉 is off-single-photon resonance by a detuning
�. The evolution of the system is described by the time-
dependent Schrödinger equation:

i�∂tc(t) = H(t)c(t), (1)

where c(t) is the vector column with the probability amplitudes
and the Hamiltonian of the system, after setting the standard
rotating wave approximation [1, 2], is

H(t) = �

2

⎡⎣ 0 0 �1(t)
0 0 �2(t)

�1(t)∗ �2(t)∗ 2�

⎤⎦ , (2)

where �1(t) is the Rabi frequency of the coupling between
states |1〉 and |3〉 and �2(t) is the Rabi frequency of the
coupling between states |2〉 and |3〉. Each Rabi frequency
parameterizes the coupling between the corresponding driving
electric field with an envelope E(t) and the relevant transition
dipole moment d: �(t) = −d · E(t)/�. Here, � = ω0

1 −ω1 =
ω0

2 − ω2 is the one-photon detuning between the laser carrier
frequencies ω j and the Bohr transition frequencies ω0

j , with
j = 1, 2. For simplicity, we assume hereafter that the detuning
is constant, � = const. We also assume that the first and last
states of the chain are on two-photon resonance, as evident
from the zeros in the first two diagonal elements.

3. Adiabatic elimination

The traditional adiabatic elimination is applicable when the
detuning � is very large,

|�| � �(t), (3)

where �(t) =
√

|�1(t)|2 + |�2(t)|2 is the root-mean-square
(RMS) Rabi frequency. In this limit, the population of state |3〉
is strongly suppressed, P3(t) ∼ �(t)2/�2 � 1. The easiest
route to adiabatic elimination of state |3〉 is to set ∂t c3(t) = 0
and replace the ensuing expression for c3(t) in the other two
equations. State |3〉 is thereby removed and we are left with an
effective two-state system of states |1〉 and |2〉, described by
the reduced Hamiltonian

He(t) = �

2

[
Se

1(t) �e(t)
�e(t)∗ Se

2(t)

]
, (4)

where

�e(t) = −�1(t)�2(t)∗

2�
, (5a)

Se
k(t) = −|�k(t)|2

2�
(k = 1, 2). (5b)

These are the well-known expressions for the two-photon
coupling and the Stark shifts resulting from the adiabatic
elimination of state |3〉; the latter is often called a ‘virtual’ state.
The vast popularity of this method is routed in the extreme
simplicity of the reduced Hamiltonian. However, it is only
applicable when condition (3) is fulfilled, which guarantees
that the population P3(t) remains negligibly small at all times:
P3(t) � 1.

4. Adiabatic approximation

We introduce now an alternative approach based upon the
adiabatic approximation, which does not necessarily require
P3(t) � 1. In fact, the population P3(t) may reach significant
transient values during adiabatic evolution but it returns to zero
in the end due to the effect of adiabatic population return [12].
Consequently, this approach allows us to calculate the effective
coupling between states |1〉 and |2〉 and the Stark shifts for a
much wider range of parameter values than condition (3).

We start again from the Hamiltonian (2). We assume that
�1(t) and �2(t) share the same time dependence3

�1(t) = β1 f (t), �2(t) = β2 f (t), (6)

and hence, �(t) = β f (t), where β =
√

|β1|2 + |β2|2. We
apply the Morris–Shore (MS) transformation [13], which
decomposes the initial system into a decoupled (dark) state
|d〉 and a two-state system composed of a bright ground state
|b〉 and the original state |3〉, as shown in figure 1, where [14]

|d〉 = β2

β
|1〉 − β1

β
|2〉, (7a)

|b〉 = β∗
1

β
|1〉 + β∗

2

β
|2〉. (7b)

3 The condition for the same time dependence of the Rabi frequencies is not
mandatory for the application of our method.
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The (constant) transformation matrix reads

B =
⎡⎣ β∗

2 /β β1/β 0
−β∗

1 /β β2/β 0
0 0 1

⎤⎦ , (8)

and the transformed Hamiltonian in the MS basis is

HMS(t) = B†H(t)B = �

2

⎡⎣0 0 0
0 0 �(t)
0 �(t) 2�

⎤⎦ . (9)

Next we make a transformation to the adiabatic basis, i.e. the
basis of eigenstates of HMS(t): {|d〉, |a1〉, |a2〉}, with

|a1〉 = cos θ (t)|b〉 − sin θ (t)|3〉, (10a)

|a2〉 = sin θ (t)|b〉 + cos θ (t)|3〉, (10b)

where

θ (t) = 1
2 arctan[�(t)/�]. (11)

Explicitly, the transformation matrix reads

A(t) =
⎡⎣1 0 0

0 cos θ (t) sin θ (t)
0 − sin θ (t) cos θ (t)

⎤⎦ , (12)

and the Hamiltonian in the adiabatic MS basis is H̃MS(t) =
A(t)†HMSA(t) − i�A(t)†∂tA(t); explicitly,

H̃MS(t) = �

2

⎡⎣0 0 0
0 � − λ(t) −2i∂tθ (t)
0 2i∂tθ (t) � + λ(t)

⎤⎦ , (13)

where

λ(t) =
√

�2 + �(t)2. (14)

If the evolution is adiabatic, then we can neglect the off-
diagonal elements ±i∂tθ (t) in equation (13). We find thereby
the adiabatic approximation H̃a

MS(t) to the Hamiltonian
H̃MS(t) in the adiabatic MS basis,

H̃a
MS(t) = �

2

⎡⎣0 0 0
0 � − λ(t) 0
0 0 � + λ(t)

⎤⎦ . (15)

Next we roll back the MS transformation B to a basis of three
new states |̃1〉, |̃2〉 and |̃3〉; the Hamiltonian in this basis reads
Ha(t) = BH̃a

MS(t)B†. These states are obtained from states
|1〉, |2〉 and |3〉 after successively making the transformations
B, A and B†; explicitly, they read

|̃1〉 = |β1|2 cos θ + |β2|2
β2

|1〉 + β1β
∗
2 (cos θ − 1)

β2
|2〉

−β1

β
sin θ |3〉, (16a)

|̃2〉 = β∗
1 β2 (cos θ − 1)

β2
|1〉 + |β1|2 + |β2|2 cos θ

β2
|2〉

−β2

β
sin θ |3〉, (16b)

|̃3〉 = β∗
1

β
sin θ |1〉 + β∗

2

β
sin θ |2〉 + cos θ |3〉. (16c)

State |̃3〉 is the one which is eliminated, since in the
adiabatic limit it is decoupled from states |̃1〉 and |̃2〉, which can
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Figure 2. Time evolution of the exact probabilities (solid lines),
compared with those, calculated by using the adiabatic
approximation (dashed lines), for hyperbolic secant pulse shape
with β = 10/T and � = 8/T .

be seen if we write the Hamiltonian in this basis. Furthermore,
states |̃1〉, |̃2〉 and |̃3〉 have the asymptotics4

lim
t→±∞ |̃1〉 = |1〉, (17a)

lim
t→±∞ |̃2〉 = |2〉, (17b)

lim
t→±∞ |̃3〉 = |3〉, (17c)

which means that for adiabatic evolution the population in state
|̃3〉 remains zero. Hence, the reduced basis involves states |̃1〉
and |̃2〉 only. Our method therefore allows us to calculate the
transition probability from state |1〉 to state |2〉, even though
we are using the basis of states |̃1〉 and |̃2〉, because, owing
to equations (17), the probability of the transition |1〉 → |2〉
is equal to the probability of the transition |̃1〉 → |̃2〉. By
the same token, the propagators in the bases

{|̃1〉, |̃2〉, |̃3〉}
and {|1〉, |2〉, |3〉} are equal too. It is easy to verify that in
the limit (3), relations (17) are fulfilled at any time, not only
asymptotically at t → ±∞.

In the original basis we can have a transient population in
state |3〉, while state |̃3〉 remains decoupled and its population
is zero during the entire evolution. This feature is illustrated
in figure 2, where we compare the time evolution of the
populations of states |1〉, |2〉 and |3〉 with the ones for states
|̃1〉 and |̃2〉.

Explicitly, the Hamiltonian driving the adiabatically
reduced system of states |̃1〉 and |̃2〉 reads

Ha(t) = �

2

[
Sa

1(t) �a(t)
�a(t)∗ Sa

2(t)

]
, (18)

where

�a(t) = β1β
∗
2

β2
�

[
1 −

√
1 + �(t)2

�2

]
, (19a)

4 The limits of t → ±∞ are only meaningful if the fields are pulse shaped.
Otherwise, our technique can still be applied by changing the limits to any
finite ti and t f .
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Sa
k(t) = |βk|2

β2
�

[
1 −

√
1 + �(t)2

�2

]
(k = 1, 2). (19b)

For large �, equation (3), we have

�

[
1 −

√
1 + �(t)2

�2

]
= −�(t)2

2�
+ �(t)4

8�3
+ O(�−5), (20)

and the coupling and the shifts of equations (19) reduce to the
corresponding coupling and shifts of equations (5) obtained
by the standard adiabatic elimination. The third term in
equation (20), which gives the lowest order correction to
equations (5), confirms condition (3) for the validity of
expressions (5) for the coupling and the Stark shift in the
adiabatic elimination approximation.

5. Adiabatic condition

We neglected the non-adiabatic terms ±i∂tθ (t) in equation
(13) with the assumption of adiabatic evolution. Thorough
analysis of the adiabatic condition has been conducted by
various authors [9, 12, 15, 16]. In general, the non-adiabatic
coupling |∂tθ (t)| must be small compared to the eigenenergy
splitting λ(t); for constant detuning, as assumed here, we find

|�∂t�(t)|
�(t)2 + �2

�
√

�(t)2 + �2. (21)

Because we assume that the original system of states
{|1〉, |2〉, |3〉} is initially in state |1〉 or state |2〉, or in a
superposition of them, this implies that the MS system
{|d〉, |b〉, |3〉} is initially in state |d〉 or state |b〉, or in
a superposition of them. The dark state |d〉 is unaffected
regardless of the interaction. When the adiabatic condition
(21) is satisfied the population in the MS two-state system
|b〉 ↔ |3〉, after a temporary partial excursion to state |3〉,
undergoes complete population return to the initial state
|b〉 [12], because the detuning is constant. The absence of
population change in the MS basis, however, does not mean
the same in the original basis of states |1〉, |2〉, |3〉: there, the
population may be redistributed between states |1〉 and |2〉.

For two of the most important pulse shapes, hyperbolic
secant, f (t) = sech(t/T ), and Gaussian, f (t) =
exp(−t2/T 2), the adiabatic condition demands, respectively,

ln(4/ε)

πT
< |�|, (22a)

β < 0.76|�| exp

[
π2�2T 2

4 ln2(4/ε)
− ln2(4/ε)

4�2T 2

]
. (22b)

These conditions are derived from the exact formula for
the transition probability of the Rosen–Zener model for a sech
pulse [17], and from a highly accurate approximate formula
for a Gaussian pulse [9]. These conditions set relations for
which the post-pulse transition probability of the eliminated
state |3〉 is P3 < ε � 1; they are illustrated in figure 3 for
ε = 0.01.

A crucial observation from the adiabatic conditions (22)
and figure 3 is that for these smooth pulse shapes, the
adiabatic regime is reached when the detuning exceeds just
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Figure 3. Adiabatic condition for the hyperbolic secant pulse,
equation (22a) (left), and Gaussian pulse, equation (22b) (right), as
a function of the detuning � and the RMS peak Rabi frequency β.
On the right of the dividing lines the final population of the
eliminated state |3〉 P3 < 0.01 and hence the evolution can be
assumed adiabatic within this deviation.

a few spectral pulse widths 1/T : just about 2/T for the sech
pulse shape and a little larger values for the Gaussian pulse
shape, which is less adiabatic because of its steeper rising
and falling edges. Obviously, for sech pulses the adiabatic
condition does not depend at all on the Rabi frequency, while
for Gaussian pulses there is a weak logarithmic dependence
on the Rabi frequency. The ensuing physical implication—the
absent, or very weak, power broadening—has been observed
experimentally [12]. An important consequence from here is
that adiabatic evolution can be achieved even when the Rabi
frequency exceeds greatly the detuning, as seen in figure 3.
Then the adiabatic elimination, which demands condition (3),
is completely inadequate, but the adiabatic approximation is
perfectly applicable. This remarkable feature explains why the
parameter ranges for the adiabatic approximation are much
broader than those for the adiabatic elimination.

6. Superadiabatic approximation

The adiabatic approximation evaluates very accurately the
transition probability in the reduced two-state system, as
we shall see below. However, even greater accuracy can be
achieved if we continue the diagonalization procedure to the
first superadiabatic basis. For this purpose, we diagonalize the
Hamiltonian (13) and obtain the superadiabatic Hamiltonian,
which has a similar structure as equation (13). Next we neglect
the superadiabatic coupling, roll back the transformation B and
find the effective coupling and the Stark shifts

�s(t) = β1β
∗
2

β2
�

[
1 −

√
1 + �(t)2 + 4(∂tθ (t))2

�2

]
, (23a)

Ss
k(t) = |βk|2

β2
�

[
1 −

√
1 + �(t)2 + 4(∂tθ (t))2

�2

]
, (23b)

with k = 1, 2. Obviously, the difference between
the superadiabatic approximation (23) and the adiabatic
approximation (19) is in the non-adiabatic terms with
(∂tθ (t))2. One can continue and derive higher order
superadiabatic corrections, which further improve the

4
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Figure 4. Transition probability P1→2 versus RMS peak Rabi
frequency β for a hyperbolic secant pulse shape with β1 = β2 =
β/

√
2 and � = 10/T . The exact probability, calculated by solving

numerically the Schrödinger equation for the original three-state
system, is compared with the transition probabilities in the reduced
two-state systems derived from the adiabatic elimination (curve E,
equations (5)), the adiabatic approximation (curve A, equations (19))
and the superadiabatic approximation (curve S, equations (23)). In
the top frame, the curves A and S are indiscernible from the exact
curve; for this reason, their accuracy is examined in the bottom
frame.
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Figure 5. The same as shown in figure 4 but the transition
probability P1→2 is plotted versus the detuning � for peak Rabi
frequencies β1 = β2 = 5/T (hence β = 5

√
2/T ).

accuracy; however, we have concluded that the superadiabatic
approximation (23) suffices to evaluate the dynamics in the
reduced two-state system with an accuracy exceeding the
quantum computing benchmark.

7. Examples

Figures 4 and 5 compare the exact post-pulse population of
state |2〉, calculated by solving numerically the Schrödinger
equation (1) with the Hamiltonian (2), with the approximations
derived from the adiabatic elimination, the adiabatic
approximation and the superadiabatic approximation. In
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Figure 6. Same as shown in figure 4, but for a Gaussian pulse shape.

figure 4, which shows the post-pulse population of state |2〉
versus the RMS Rabi frequency β, the traditional adiabatic
elimination fails already when β approaches �/2 and it
is completely inadequate beyond this value. The adiabatic
and superadiabatic approximations remain highly accurate
even when the RMS Rabi frequency exceeds the detuning
considerably and are indiscernible from the exact curve in
the upper frame of figure 4. The lower frame shows the
errors of these approximations, which remain well below
10−2 for the adiabatic approximation, and well below the
quantum computing benchmark 10−4 for the superadiabatic
approximation.

Similar conclusions are derived from figure 5 where
the post-pulse population of state |2〉 is plotted versus the
detuning �. The adiabatic elimination curve approaches the
exact values for |�| � β only, while the error of the adiabatic
approximation decreases rapidly as � grows. The error of the
superadiabatic approximation falls below the 10−4 benchmark
already for � ∼ β. Clearly, the adiabatic and superadiabatic
approximations fail only in the limit � → 0, as expected.
These features are in complete agreement with the adiabatic
condition (22a) illustrated in figure 3.

In figure 6, we plot the post-pulse transition probability
as a function of the RMS Rabi frequency for Gaussian pulse
shapes. The fact that Gaussian pulses are less adiabatic than
the hyperbolic secant leads to lower accuracy. However,
an accuracy of 10−4 can still be accomplished using the
superadiabatic approximation.

8. Conclusions

The widely used technique of adiabatic elimination of off-
resonant states in quantum systems provides the correct
couplings and light shifts in the reduced system for very
large values of the detuning only, |�| � �(t). We have
introduced two alternative techniques for exclusion of an off-
resonant state based upon the adiabatic and superadiabatic
approximations; for large detuning, these reduce to the
expressions obtained by the adiabatic elimination method.
However, because the conditions for adiabatic evolution
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impose much weaker restrictions on the interaction parameters
than the adiabatic elimination condition, the resulting
coupling and light shifts in the adiabatic and superadiabatic
approximations are valid in much broader ranges of interaction
parameters. The superadiabatic approximation, in particular,
allows us to easily suppress the error below the quantum
computing benchmark of 10−4; this is possible also with the
adiabatic approximation albeit in a more restricted parameter
domain. For smooth pulse shapes, the condition for the
adiabatic and superadiabatic approximations is merely |�| �
1/T , with only weak dependence on the Rabi frequency
possible. Therefore, these approximations can be used for
� � |�|, a domain where the adiabatic elimination is
completely inadequate; hence, we can claim that in this manner
we can eliminate ‘nearly resonant’ states.

Finally, we point out that we have focused our attention
to three-state chainwise connected systems. However, the
methods for exclusion of off-resonant states introduced here
are applicable to arbitrary quantum systems with discrete
energy states by selecting an appropriate subspace and carrying
out the exclusion routine over this subspace.
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